智商直线下降

# 背景

这些年,我们的 CPU、内存、I/O 设备都在不断迭代,不断朝着更快的方向努力。但是,在这个快速发展的过程中,**有一个核心矛盾一直存在,就是这三者的速度差异。**CPU 和内存的速度差异可以形象地描述为:CPU 是天上一天,内存是地上一年(假设 CPU 执行一条普通指令需要一天,那么 CPU 读写内存得等待一年的时间)。内存和 I/O 设备的速度差异就更大了,内存是天上一天,I/O 设备是地上十年。

程序里大部分语句都要访问内存,有些还要访问 I/O,根据木桶理论(一只水桶能装多少水取决于它最短的那块木板),程序整体的性能取决于最慢的操作——读写 I/O 设备,也就是说单方面提高 CPU 性能是无效的。

为了合理利用 CPU 的高性能,平衡这三者的速度差异,计算机体系机构、操作系统、编译程序都做出了贡献,主要体现为:

CPU 增加了缓存,以均衡与内存的速度差异;

  1. 操作系统增加了进程、线程,以分时复用 CPU,进而均衡 CPU 与 I/O 设备的速度差异;
  2. 编译程序优化指令执行次序,使得缓存能够得到更加合理地利用。
  3. 现在我们几乎所有的程序都默默地享受着这些成果,但是天下没有免费的午餐,并发程序很多诡异问题的根源也在这里。

# 并发问题一:缓存导致的可见性问题

在单核时代,所有的线程都是在一颗 CPU 上执行,CPU 缓存与内存的数据一致性容易解决。因为所有线程都是操作同一个 CPU 的缓存,一个线程对缓存的写,对另外一个线程来说一定是可见的。例如在下面的图中,线程 A 和线程 B 都是操作同一个 CPU 里面的缓存,所以线程 A 更新了变量 V 的值,那么线程 B 之后再访问变量 V,得到的一定是 V 的最新值(线程 A 写过的值)。

a07e8182819e2b260ce85b2167d446da一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性

多核时代,每颗 CPU 都有自己的缓存,这时 CPU 缓存与内存的数据一致性就没那么容易解决了,当多个线程在不同的 CPU 上执行时,这些线程操作的是不同的 CPU 缓存。比如下图中,线程 A 操作的是 CPU-1 上的缓存,而线程 B 操作的是 CPU-2 上的缓存,很明显,这个时候线程 A 对变量 V 的操作对于线程 B 而言就不具备可见性了。

书写代码验证上述场景。

public class Test {
  private long count = 0;
  private void add10K() {
    int idx = 0;
    while(idx++ < 10000) {
      count += 1;
    }
  }
  public static long calc() {
    final Test test = new Test();
    // 创建两个线程,执行 add() 操作
    Thread th1 = new Thread(()->{
      test.add10K();
    });
    Thread th2 = new Thread(()->{
      test.add10K();
    });
    // 启动两个线程
    th1.start();
    th2.start();
    // 等待两个线程执行结束
    th1.join();
    th2.join();
    return count;
  }
}

直觉告诉我们应该是 20000,因为在单线程里调用两次 add10K() 方法,count 的值就是 20000,但实际上 calc() 的执行结果是个 10000 到 20000 之间的随机数。为什么呢?

我们假设线程 A 和线程 B 同时开始执行,那么第一次都会将 count=0 读到各自的 CPU 缓存里,执行完 count+=1 之后,各自 CPU 缓存里的值都是 1,同时写入内存后,我们会发现内存中是 1,而不是我们期望的 2。之后由于各自的 CPU 缓存里都有了 count 的值,两个线程都是基于 CPU 缓存里的 count 值来计算,所以导致最终 count 的值都是小于 20000 的。这就是缓存的可见性问题。

# 源头之二:线程切换带来的原子性问题

由于 IO 太慢,早期的操作系统就发明了多进程,即便在单核的 CPU 上我们也可以一边听着歌,一边写 Bug,这个就是多进程的功劳。

操作系统允许某个进程执行一小段时间,例如 50 毫秒,过了 50 毫秒操作系统就会重新选择一个进程来执行(我们称为“任务切换”),这个 50 毫秒称为“时间片”。

在一个时间片内,如果一个进程进行一个 IO 操作,例如读个文件,这个时候该进程可以把自己标记为“休眠状态”并出让 CPU 的使用权,待文件读进内存,操作系统会把这个休眠的进程唤醒,唤醒后的进程就有机会重新获得 CPU 的使用权了。

这里的进程在等待 IO 时之所以会释放 CPU 使用权,是为了让 CPU 在这段等待时间里可以做别的事情,这样一来 CPU 的使用率就上来了;此外,如果这时有另外一个进程也读文件,读文件的操作就会排队,磁盘驱动在完成一个进程的读操作后,发现有排队的任务,就会立即启动下一个读操作,这样 IO 的使用率也上来了。

Java 并发程序都是基于多线程的,自然也会涉及到任务切换,也许你想不到,任务切换竟然也是并发编程里诡异 Bug 的源头之一。任务切换的时机大多数是在时间片结束的时候,我们现在基本都使用高级语言编程,高级语言里一条语句往往需要多条 CPU 指令完成,例如上面代码中的count += 1,至少需要三条 CPU 指令。

  • 指令 1:首先,需要把变量 count 从内存加载到 CPU 的寄存器;
  • 指令 2:之后,在寄存器中执行 +1 操作;
  • 指令 3:最后,将结果写入内存(缓存机制导致可能写入的是 CPU 缓存而不是内存)。

操作系统做任务切换,可以发生在任何一条CPU 指令执行完,是的,是 CPU 指令,而不是高级语言里的一条语句。对于上面的三条指令来说,我们假设 count=0,如果线程 A 在指令 1 执行完后做线程切换,线程 A 和线程 B 按照下图的序列执行,那么我们会发现两个线程都执行了 count+=1 的操作,但是得到的结果不是我们期望的 2,而是 1。

我们潜意识里面觉得 count+=1 这个操作是一个不可分割的整体,就像一个原子一样,线程的切换可以发生在 count+=1 之前,也可以发生在 count+=1 之后,但就是不会发生在中间。我们把一个或者多个操作在 CPU 执行的过程中不被中断的特性称为原子性。CPU 能保证的原子操作是 CPU 指令级别的,而不是高级语言的操作符,这是违背我们直觉的地方。因此,很多时候我们需要在高级语言层面保证操作的原子性。

最后编辑时间: 7/9/2020, 9:25:38 AM